
588 IEEE TRANSACTIONSON MICROWAvE!THEORY AND TECHNIQUES, JULY 1975

ference in magnitude between the minimum of J,B and the maximum

oftl=z (note thedifferent scale for~,aand.l=m).
The program m written also allows inclusion of loasy media by

only a slight modification since c,, K, and x are already written se
complex variables, Limitation in time and money restricted the
number of results that could be obtained.
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Capacitance of a Circular Disk for Applications in

Microwave Integrated Circuits
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RICHARD F. H. YANG, mLLOW, IEEE

Abstract—The quasi-static solution for a circular disk separated

from a ground plane by a dielectric substrate is studied using the

dual integral equation approach. A simple expression for equivalent

capacitance is determined.

INTRODUCTION

The analytical study of disk resonators is of considerable impor-

tance for applications in integrated circuits. In order to determine the
resonant frequency of such structures, it becomes necessary to
obtain the value of capacitance [1 ~, [2]. Recently, the determina-

tion of capacitance for a circular disk resonator was accomplished
using computer calculations based on a numerical approach in

spectral domain [1], [3]. Although capacitance was determined

readily, it appears that the determination of actual surface charge

densities and potential functions may warrant inversion of matrices

of large orders.
The main complication in such a class of problems arises because of

the mixed boundary conditions involved. Various approaches have
been put forth in the past to circumvent this complexity. Rikitake
[4] used the relaxation method for studying electromagnetic induc-
tion in a plane sheet with a circular aperture. For a two-dmensional
problem in Cartesian coordinates, use was made of conformal

mapping [5]. A method using multiple partial images has been
reported [6]. The capacitance of disk resonator in free space has also
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been obtained [7]. In this short paper, a convenient method for an
accurate solution to the disk resonator is developed using dual

integral equations [8]. A major advantage lies in the fact that

capacitance, charge densities, and field functions are determined in

terms of a quickly convergent series.

FORMULATION

Consider the geometry shown in Fig. 1 for a circular disk resonator

of radius “a,” separated from a ground plane by a dielectric material.

Without loss of generality, the radius is assumed to be unity. The

disk is charged to potential VO. The potential functions are considered

to be ~1(r,z) and 4Z(r,z) for z > d and O < z < d, respectively.

Because of circular symmetry, the Hankel transforms of these

functions may be defined as

/
d,,,(a,z) = m411,z.(r,s)Jo(ti)rdr. (1)

Q

Using the boundary conditions & (a,O) = O and & (a, + co) = O,
the following expressions for potentials are obtained:

&(cx,s) = A (~) sinh az, O<s.<d (2)

c$I(%z) = ~(a) em [-CY(Z – d)], z > d. (3)

The unknowns A (a) and B (a) are to be determined from the follow-

ing boundary conditions. At the interface z = d,

d, (r,d) = .$a(r,d) . (4)

In particular,

A (r,d) = A (r,d) = VO, O<r <l. (5)

Aleoatz=d

a$l(r,d) ~, a@(r,d) o——
az 7’ ‘

r>l. (6)

Clearly from (4)

A (a) sinh ad = l?(a) (7)

and using (6) and (7), one cm obtain the following dual integral
equations

!
~+Sinh ad

Om[,ginh ad + c, cosh @l j(a) ●Jo(cw)da = Vo, O < r <1 (8)

and

/
‘j(a) .JO(ar)& = O, r>l

o

where

f(a) = a’A (a) [sinh ad + e, cosh ad].

%,+(r-, z)

Ground plate~

Fig. 1. Geometry of the problem.

(9)

(lo)
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Equations (8) and (9) are special casea (V = O) of the general dual

integral equations

/
‘G(p)j(p)&(rp)dP = g(r), 0<? ’<1 (11)

o

/

.
f(P)J”(?T)@ = 0, ?>1. (12)

o

Such equations have been treated previously in the literature. Under

certain conditions, these equations can be s@ved by employing

Mellin transforms [9] or by converting them to Fredhohn integral

equations [10]. Here, use is made of a certain dwccntinuous property

of integrals involving Bessel functions. The unknown function ~(a) is
assumed to be of the form

f(a) = d-kg awlzm+k(a) (13)
m-o

where k is reel, >0.
This automatically satisfies (9) and the general solution can be

determined from (8). For the case a(r) = A w’ atmlicable here, the

solution is obtein~”as the following series [11, p: i15]:

8.=0, forn>O; 60=1

I% = Lo,n; cn’ = S -k,.%
m-o

and

(2u + 4n + 2k)-’L~,n

.
/
,m{P’+W(P) -1 )p-’~,+~+~(p) “~,+w+~(p) dp.

From practical considerations, k is chosen such that {p2_W2 (p)
is essmall as possible.

, (14)

(15)

(16)

-1)

SOLUTION AND DISCUSSION

Initially, an attempt is made to obtain the solution for the condi-
tion d <1. To make pz4W (p) approach 1 for small values of d, (8)

is rewritten as

/

.
G(cY)~(a)~o(ar) da = ~ VO (17)

o

where

G(a) =
e,(ad)’1 tanh ad

tanh ad -1- ●, “
(18)

Equation (18) is substituted in (16) and k is chosen to be “1.” The

coefficients are then obtained by performing the integrations in (16).

Insertion in (14) yields the ~. By retracing through the equations,

~:(adz) and hence the potential functions Ol,,(r,z) can be deter-

In particular, if one is primarily interested in calculating the
capacitance of the disk resonator, the total charge density on the

disk is giVSYl by

.
wr(r,d) = @E am

/
‘Jw+l (a) %lo(ar) &l (19)

m-a o

which is zero for r >1 as expected. After interchanging the order of

integrations and using an integral formula [12, p. 692], the total

charge on the disk is obtained as

Q = 2.eo~ am.
r(l). r(n+l)

2r(-n+l)r(nz +2)r(7n+ l)”
(20)

m-O

Since r(–n) + = for n = 0,1,2,..0, one gets

(21)

It maybe interesting to note that the value of the total charge on the

disk and hence the capacitance is uniquely determined by ao only

while the charge density and potential functions are dependent on all
the ~. This implies that the transform of charge density should be of
the form (.ll (a) /a) for obtaining stationary value of capacitance
l-n-1
LOJ.

The method followed for obtaining the capacitance for the case

d > a is stiller to the aforementioned approach. In this case, (8) is
rewritten as

/

co

G(a)f(ci)Jo(cw) da = (e, + 1) VO (22)
o

G(a) =
(e, + I)a-l sinh ad

[sinh ad + e cosh ad]”
(23)

Equation (23) is substituted in (16) and k is chosen to be ~. In this

case, the expression for capacitance is

z8/2#2eo

c=— . m.
Vo

(24)

As before, capacitance is determined by only one coefficient. The

transform of charge density for numerical calculations is given by

cr-llz ●JIIZ(a), which is the same as (sin a/a) obtained elsewhere [3].
The capacit&nce values can be calculated by completing the

integrations in (16) and by substituting in (14) and (21) or (24).
For d ~ a, the integrations were performed on the digital computer
and for one set of parameters d and e,, the computational time re-
quired was approximately 3 s on UNIVAC 1108. The integrand

decreases-asymptotically as the square of the argument and the inte-
gration was termirmted at the upper limit of 30. Hence the capaci-

tance values obtained for d < a are slightly lower than exact values.

A more accurate determination of capacitance may require extending

the upper limit of integration.,

When d ~ a, the integration for L~,n can be obtained as a quickly

convergent series in powers of (1/d). Thk is indicated in the Appen-

dix. It can be noted that as d + O, (14) and (21) show that the

capacitance approaches (~,~0ra2/d) which is the value obtained when
fringing fields are neglected. Similarly from (14), (24), and (A-3),
for d ~ co, the zeroth-order term or, in other words, the asymptotic
value of (Cd/wrcP) is obtained as (4 (c, + 1) d/.s,~a) which is (8d/~a)

for G. = 1.
In Fig, 2, the normalized capacitance values are plotted as func-

tions of dwtance d. The stationary values obtained elsewhere [3] are

also indicated for comparison. -Good agreement is evident. In Fig. 3,

the resonant frequency using the equivalent value of static capacitance
obtained here is plotted for e, = 2.65. The curves by Mao et al. [13]

and Itoh and Mittra [1] are also drawn. The experimental values

reported in [1] are also shown. It can be noted that excellent agree-

ment is obtained with the experimental results.

t~ONGLUDING REMARKS

The dual integral equation approach seems to be highly suitable

for determining the potential function and capacitance of a circular

disk resonator. No inversion of matrices is needed. The computx

tional effort requiiwd is minimal. The complex situation of an arbl-



590 IEEE TRANSACTIONS ONMICROWAVE TEEORYAND TJ3CHNIQUES, JULY 1975

40 1 1 I I I
30 – — This theory

----- Itoh and M#tira [j,[3]

20 -

10 -

“m~5 -

s
u

2 –

I
01 0.5 I 2 5 10

Fig. 2. Capacitance of a circular disk with dielectric substrate.
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Fig. 3. Resonant frequency of disk rescmator.

trary potentiaf function on the disk can also be studied using this

approach.

It may also be possible to extend the method to other problems

involving mixed boundary conditions, e.g., striplines or micro-
strips [14] and circular strip resonators. For the latter case, the

formulation would involve the discussion of triple integral equations.

The solutions for these have been attempted in the literatme [15].

APPENDIX

Ford > a, the expression (16) for L~,~can berewrittenm

!
m

(47L + l)-%?,. =
sinhpd — coshpd

“ P-l
o “” sinh pd + e, cosh pd

J2m+1/2(P) J2n+1/2(P) dp. (A-1)

To obtain the result ss a series in (l/d), it is desirable to use the
following expansion

sinh pd — cosh pd

()
= ~~ (-l)’ A ‘exp (-2pds).

sinh pd + E, cosh pd er+l

(A-2)

Using the formulas for Weber–Schafheitlin integral [16, p. 402], one

gets

If needed, using the relation [17, p. 21]

2
n-1

and [12, p.

(–l)~-kw 1 ‘nu_el z.exp (–u) du.—
n’ /r (s) ~ 1 +sexp (–w)

325]

/

m U’–l exp ( —M-J)
du = r (,) @(p;P;#)

~ 1 –pexp(–u)

where @(6;P;~) is Lerch’s exponent [18], the second series in (A-3)

may be rewritten as

‘(=)’[(-’fi)’(2m+2n+2z+1)’11
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(4n + l)-’Lm,. =
()

Z2
(–1)’r(27n+27t +21 +1). r(2m+2n +21 +2)

()
.5 ( _~)8 e ‘ @@n+.+2+1/2).

C. — 1 ~42d(4d)2@fi+W! r(2m + Z + :). I?(2n + 1 + ~). r(2m -t-2n + 1 +2) .-l e,+l

(A-3)
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where

is the two-dimensional Dirac delta function, cois the permittivit y of

free space, and r = (Z2 -I- @)1/2. An integral representation of

log (z) with z = y +jz and jz = –1 is [7] ‘

log (z) = (.
‘exp (—A) — exp (—Lz) ~X

(3)
Jo A

where the integral converges provided Re (z) >0. On taking the
real part of (3) and substituting for log (r) in (2), the free-space

Green’s function takes the form

~o=L
/

‘@exp (–A I y 1) cos (kc) – exp (–k) ~X
(4)

2rr.o ~ A

Note that in (4) the x and y variables are separated so that deriva-

tives may be easily obtained. Now the integrsJ representation (4)

is used to derive the electrostatic Green’s function, the results of

which may be applied to obtain approximately the characteristics

of the lowest order ‘(quasi-TEM” mode of a microstrip.

III. OPEN MICROSTRIP GREEN’S FUNCTION

To ~o are added functions satisf ying the two-dimensional Laplace’s

equation, exhibiting the same z behavior as (4) and together with

A Note on Green’s Function for Microstrip
+0 satisfying the appropriate boundary conditions. Thus with
reference to Fig. 1, the Green’s function for the open microstrip
may be chosen as . .

SHIMON COEN, STUDENT MEMBER, IEEE

Abstract—The electrostatic Green% function for the open or cov-
ered microstrip line is obtained by an integral representation of the
free space Green’s function, the results of which may be applied to

obtain approximately the characteristics of the lowest order ‘{quasi-
TEMt’ mode of microstrip.

I. INTRODUCTION

The electrostatic Green’s function for the open microstrip line

may be obtained from extended image theory as illustrated by

Silvester [1] and later by Weeks [2]. Weiss and Bryant [3] derived

the covered microstrip Green’s function by using a computer al-

gorithm and this was refined by Farrar and Adams [4]. However,
in [4] the Green’s function is not explicitly given for all values of
b/hi and the logarithmic singularity inherent in their series representat-

ion is not immediately apparent. A direct method of obtaining
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1 b is the separation of the ground planes and h is the height of the

line source from the bottom ground plane.

+1 (w) = -J-
2rreo

for y >0, and

(5)

$2 (X,y) = J--
2rT60er

/
. ‘.f2J) ew [–X(V - A)] +f, (h) exp [A(u – A)]

o A

-00s (b) dx (6)

—x

‘.-h

Fig. 1, Green’s function geometry for the open microstrip.


