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ference in magnitude between the minimum of J . and the maximum
of J.Z (note the different scale for J.F and J.F).

The program as written also allows inclusion of lossy media by
only a slight modification since ¢, x, and x are already written as
complex variables. Limitation in time and money restricted the
number of results that could be obtained.
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Capacitance of a Circular Disk for Applications in
Microwave Integrated Circuits

SURESH R. BORKAR, MEMBER, IEEE, AND
RICHARD F. H. YANG, FELLOW, IEEE

Abstract—The quasi-static solution for a circular disk separated
from a ground plane by a dielectric substrate is studied using the
dual integral equation approach. A simple expression for equivalent
capacitance is determined.

INTRODUCTION

The analytical study of disk resonators is of considerable impor-
tance for applications in integrated circuits. In order to determine the
resonant frequency of such structures, it becomes necessary to
obtain the value of capacitance [1], [2]. Recently, the determina-
tion of capacitance for a circular disk resonator was accomplished
using computer calculations based on a numerical approach in
spectral domain [17, [8] Although capacitance was determined
readily, it appears that the determination of actual surface charge
densities and potential functions may warrant inversion of matrices
of large orders. -

The main complication in such a class of problems arises because of
the mixed boundary conditions involved. Various approaches have
been put forth in the past to circumvent this complexity. Rikitake
[4] used the relaxation method for studying electromagnetic induc-
tion in a plane sheet with a circular aperture. For a two-dimensional
problem in Cartesian coordinates, use was made of conformal
mapping [5]. A method using multiple partial images has been
reported [6]. The capacitance of disk resonator in free space has also
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been obtained [7]. In this short paper, a convenient method for an
accurate solution to the disk resonator is developed using dual
integral equations [8]. A major advantage lies in the fact that
capacitance, charge densities, and field functions are determined in
terms of a quickly convergent series.

FORMULATION

Consider the geometry shown in Fig. 1 for a circular disk resonator
of radius ‘‘a,”’ separated from a ground plane by a dielectric material.
Without loss of generality, the radius is assumed to be unity. The
disk is charged to potential V,. The potential functions are considered
to be ¢;(r,2) and ¢:(r2) for z > d and 0 < z < d, respectively.
Because of circular symmetry, the Hankel transforms of these
functions may be defined as

Fra(esz) = / w¢1,z(r,z)-fo(ar)r dr. 1)
[

Using the boundary conditions @:(a,0) = 0 and @i, + ») =0,
the following expressions for potentials are obtained:

P2(e,z) = A(a) sinh oz,
B1(az) = B(a) exp [—alz — d)],

The unknowns 4 (e) and B(«) are to be determined from the follow-
ing boundary conditions. At the interface z = d,

o1(r,d) = ¢a(r,d). (4)

0<z<d (2)
z2>d. (3)

In particular,

di(rd) = ¢a(nd) = Vo, 0<r<1 (5)
Alsoatz = d
8¢ (r,d) __ Oge(rd)
92 €r 9z = 0, r > 1. (6)
Clearly from (4)
A(a) sinh ad = B(a) ()]

and using (6) and (7), one can obtain the following dual integral
equations

® o~ sinh ad
. . = 0
o Lsinh ad + & cosh ad] fle) Jolar)de = Vo, <r<1 @&
and
/ F(e)Jolar)da =0, r>1 ©
[
where

f(a) = oA (a)[sinh ad + ¢ cosh ad].

(10)
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Ground plate

Fig. 1. Geometry of the problem.
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Equations (8) and (9) are special cases (v = 0) of the general dusal
integral equations

[G(p)f(pwv(rp)dpw(r), o<r<i (1)

/ f®),(rp)dp =0, > 1 (12)
°
Such equations have been treated previously in the literature. Under
certain conditions, these equations can be solved by employing
Mellin transforms [9] or by converting them to Fredholm integral
equations [107]. Here, use is made of a certain discontinuous property
of integrals involving Bessel functions. The unknown function f(«) is
assumed to be of the form
fla) = a3 andomsr(a) (13)
m=0

where k is real, >0.

This automatically satisfies (9) and the general solution can be
determined from (8). For the case g(r) = A-r* applicable here, the
solution is obtained as the following series [11, p. 1157:

2% +1)A

By [ 7 B T 4
T+ k) [bn—ent e’ —cn' + 2] ,(14)
where
6, =0, forn >0; S =1
en=Lon; €' =2, Lonln
m=0
6! = Lonta!, ete. (15)
m=)
and

(2" + 4n ~+ 2k)_1Lm.n
- fo (P6(D) — 119" Vrssmss () Trsanss (0) dp. (16)

From practical considerations, k is chosen such that {p*~%*G(p) — 1}
is as small as possible.

SOLUTION AND DISCUSSION

Initially, an attempt is made to obtain the solution for the condi-
tion d < 1. To make p* %G (p) approach 1 for small values of d, (8)
is rewritten as

[ "G (@ (@) a(ar) da =27, 7)
4]
where

Glo) = er{ad) ! tanh ad (18)

tanh ad <+ &

Equation (18) is substituted in (16) and k is chosen to be “1.”” The
coefficients are then obtained by performing the integrations in (16).
Insertion in (14) yields the a,. By retracing through the equations,
P1.2(e,2) and hence the potential functions ¢y,2(r,2) can be deter-
mined.

In particular, if one is primarily interested in calculating the
capacitance of the disk resonator, the total charge density on the
disk is given by '

psr(rd) = 3 an / ® Fams1 (@) +Jo(ar) da (19)
m=0 0

which is zero for r > 1 as expected. After interchanging the order of
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integrations and using an integral formula [12, p. 6927, the total
charge on the disk is obtained as

r1).-r(m+1)

- 2 m. . 2
Q "‘°,,,Z_o“ M em I DTm +Hrm D 20
Since I'(—n) — » for n = 0,1,2,¢+¢, one gets
Q 7e
= v-o = Vo'ao (21)

It may be interesting to note that the value of the total charge on the
disk and hence the capacitance is uniquely determined by @, only
while the charge density and potential functions are dependent on all
the a,,. This implies that the transform of charge density should be of
the form (J1(a)/a) for obtaining stationary value of capacitance
31

The method followed for obtaining the capacitance for the case
d > o is similar to the aforementioned approach. In this case, (8) is
rewritten as

f " #@)f(@)olar) da = (e + 1)V (22)
0

where

(er + 1) ot ginh ad
[sinh ad + ¢ cosh ad]’

Gla) = (23)
Equation (23) is substituted in (16) and % is chosen to be 3. In this
case, the expression for capacitance is

28/2.”1/260

(24)

*Qo.
0

As before, capacitance is determined by only one coefficient. The
transform of charge density for numerical calculations is given by
a2Jy13(e), which is the same as (sin a/) obtained elsewhere [3].

The capacitance values can be calculated by completing the
integrations in (16) and by substituting in (14) and (21) or (24).
For d < a, the integrations were performed on the digital computer
and for one set of parameters d and e, the computational time re-
quired was approximately 3 s on UNIVAC 1108. The integrand
decreases asymptotically as the square of the argument and the inte-~
gration was terminated at the upper limit of 30. Hence the capaci-
tance values obtained for d < a are slightly lower than exact values.
A more accurate determination of capacitance may require extending
the upper limit of integration.

When d > a, the integration for La,, can be obtained as a quickly
convergent series in powers of (1/d). This is indicated in the Appen-
dix. It can be noted that as d — 0, (14) and (21) show that the
capacitance approaches (era?/d) which is the value obtained when
fringing fields are neglected. Similarly from (14), (24), and (A-3),
for d — «, the zeroth-order term or, in other words, the asymptotic
value of (Cd/era?) is obtained as (4 (er + 1)d/ewa) which is (8d/xa)
for ¢ = 1.

In Fig, 2, the normalized capacitance values are plotted as func~
tions of distance d. The stationary values obtained elsewhere 3] are
also indicated for comparison.-Good agreement is evident. In Fig. 3,
theresonant frequency using the equivalent value of static capacitance
obtained here is plotted for ¢» = 2.65. The curves by Mao et al. [13]
and Itoh and Mittra [17 are also drawn. The experimental values
reported in [1] are also shown. It can be noted that excellent agree-
ment is obtained with the experimental results.

CONCLUDING REMARKS

The dual integral equation approach seems to be highly suitable
for determining the potential function and capacitance of a circular
disk resonator. No inversion of matrices is needed. The computa-
tional effort required is minimal. The complex situation of an arbi-
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trary potential function on the disk can also be studied using this
approach.

It may also be possible to extend the method to other problems
involving mixed boundary conditions, e.g., striplines or micro-
strips [14] and circular strip resonators. For the latter case, the
formulation would involve the discussion of triple integral equations.
The solutions for these have been attempted in the literature [157.

APPENDIX

For d > a, the expression (16) for Ln,» can be rewritten as

sinh pd — cosh pd
sinh pd 4+ & cosh pd

Jom1/2(D) *J a2 (p) dp-

'-l

(4n + 1)Ly, = /’sn €
0

(A-1)

To obtain the result as a series in (1/d), it is desirable to use the
following expansion
sinh pd — cosh pd
sinh pd + & cosh pd & —

12( 1)*(

a=]

— ) exp (—2pds).

(A-2)

Using the formulas for Weber-Schafheitlin integral [16, p. 4027, one
gets

(=1y'r(2m +2n + 21+ 1)-

If needed, using the relation [17, p. 21]

( ]_)n—lxn _
nzzl n® B I‘(s) /

and [12, p. 325]

/ * wlexp (—pu)
—_—d
o 1 —pexp (—u)

_meexp (—u)
1 + zexp (—u)

u = T (»)®{(Bw;p)

where ®(8;7;u) is Lerch’s exponent [18], the second series in (A-3)
may be rewritten ag

> (- 1>s(

—~1\¢
s 2(m+ni+D—1
— 1

(Gr_1> [( & — 1
= 3 -
&+ 1 e+ 1
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A Note on Green’s Function for Microstrip

SHIMON COEN, STUDENT MEMBER, IEEE

Abstract—The electrostatic Green’s function for the open or cov-
ered microstrip line is obtained by an integral representation of the
free space Green’s function, the results of which may be applied to
obtain approximately the characteristics of the lowest order “quasi-
TEM?” mode of microstrip.

I. INTRODUCTION

The electrostatic Green’s function for the open microstrip line
may be obtained from extended image theory as illustrated by
Silvester [1] and later by Weeks [2]. Weiss and Bryant [3] derived
the covered microstrip Green’s function by using a computer al-
gorithm and this was refined by Farrar and Adams [4]. However,
in [4] the Green’s function is not explicitly given for all values of
b/ht and the logarithmic singularity inherent in their series representa-
tion is not immediately apparent. A direct method of obtaining
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1 p is the separation of the ground planes and h is the height of the
line source from the bottom ground plane.
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the Green’s function for an open or covered microstrip without using
extended image theory or a computer algorithm, valid for any b/h
and retaining the logarithmic singularity, is now given. The approach
used is conceptually similar to that of Kaden [5], in which the
capacitance of a pair of circular cylindrical wires above a dielectric
coated ground plane was determined.

II. FREE-SPACE GREEN’S FUNCTION

The free-space Green’s function satisfying

Vigo = ~8(x,y) 1)
is [6]
-1
o = log (r) (2)
2men
where
9? 92
2 =
V= Pl 3(zyy)

is the two-dimensional Dirac delta function, ¢ is the permittivity of
free space, and r = (2 + y?)¥2. An integral representation of
log (2) withz =y 4+ jzr and 2 = —1is [7] ’

log (2) = /“‘ exp (—A\) —)\exp (—Az) I’ 3)
0

where the integral converges provided Re (z) > 0. On taking the
real part of (3) and substituting for log (r) in (2), the free-space
Green’s function takes the form

1 f’” exp (=M |y ]) cos)\(kx) — exp (—1\) ™~

¢o = 4)

" e o

Note that in (4) the z and y variables are separated so that deriva-
tives may be easily obtained. Now the integral representation (4)
is used to derive the electrostatic Green’s function, the results of
which may be applied to obtain approximately the characteristics
of the lowest order “quasi-TEM’’ mode of a microstrip.

1II. OPEN MICROSTRIP GREEN’S FUNCTION

To ¢ are added functions satisfying the two-dimensional Laplace’s
equation, exhibiting the same z behavior as (4) and together with
¢o satisfying the appropriate boundary conditions. Thus with
reference to Fig. 1, the Green’s function for the open microstrip
may be chosen as

1
d(z,y) = Irer

_/‘”eXp (=My—al) +Ai) exp[—ry — A)]
A
]

scos (Az) dA (5)
for y > 0, and

T =
#2(2,y) y—
‘f“fz(k) exp [—Ny — A)T+ (M) exp (A (y — A)]
0 A
~cos (Az) dX\ (6)
v line source
. fos
| X
5 7
Lysoh
Fig. 1. Green’s function geometry for the open microstrip.



